پروژه دانشجویی مقاله کاربرد لیکا در عمران در word

 

برای دریافت پروژه اینجا کلیک کنید

 پروژه دانشجویی مقاله کاربرد لیکا در عمران در word دارای 50 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد پروژه دانشجویی مقاله کاربرد لیکا در عمران در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه پروژه دانشجویی مقاله کاربرد لیکا در عمران در word

لیکاچیست
ویژگیهای بتن لیکا
لیکا درشیب بندی کف وبام
ویژگیهای پوکه صنعتی لیکا
کاربرد لیکا درصنعت ساختمان
عایق بندی کف
لیکا دربتن سبک ونیمه سبک
دانه کاربرد بتن های لیکا
مزایای کاربری بتن سبک لیکا
کاربرد لیکا درراهسازی
وزن فضایی کم
پایداری خاکریزها
عایقکاری یخبندان
تسطیح تورم یخبندان
کاربرد لیکا به عنوان زهکش
لیکا درکشاورزی
مزایای لیکا
ویژگیهای لیکا درکنترل آتش
اثرکاری لیکا درمقاومت برابر زلزله
لیکا ورسانایی حرارتی

فهرست مطالب
عنوان صفحه

فصل دوم : بتنهای اسفنجی
چکیده
مقدمه
بتن اسفنجی اتوکلاو
فراوردهای حرارتی
مقاومت دربرابر آتش
بلوکهای حرارتی AAC
مواد کامپوزیت
ساختارمواد کامپوزیت
مواد کامپوزیت درساختمان
نتایج
تصاویر

لیکا چیست؟

امروزه دانه هاى سبک خاک رس منبسط شده در بیش از 30 کشور جهان با نامهاى تجارى گوناگون تولید و عرضه مى شوند. در اروپا و آمریکا این دانه ها را با عناوینى نظیر لایتگ، لیکا، آگلایت و آرژکس مى شناسند. این دانه ها به طور مشابه در ایران با نام لیکا تولید مى شوند
دانه خاک رس منبسط شده سبک( LECA ( Light Expanded Clay Aggregate  
ویژگى هاى این دانه ها باعث شده است تا در طیف وسیعى از کارهاى عمرانى و صنعتى به کار روند. در این نگاشت برخى مسائل اساسى در مورد تولید و مصرف لیکا بررسى مى گردد
لیکا چیست؟ یکى از روشهاى تهیه دانه هاى سبک استفاده از کوره گردان است. وقتى برخى از انواع رس با دانه هایى به ریزى صفر تا دو میکرون در دماى بالاتر از 1000 درجه سانتى گراد در این کوره ها حرارت مى بینند، گازهاى ایجاد شده در داخل آنها منبسط مى شوند و هزاران سلول هواى ریز تشکیل مى دهند. با سرد شدن مصالح، این سلولها باقى مى مانند و سطح آنها سخت مى شود

مهم ترین ویژگى هاى لیکا عبارتند از : وزن کم، عایق حرارت، عایق صوت، بازدارنده نفوذ رطوبت، مقاومت در برابر یخ زدگى، تراکم ناپذیرى تحت فشار ثابت و دائمى، فسادناپذیرى، مقاوت در برابر آتش و PH نزدیک به نرمال.  وزن کم این دانه ها و در نتیجه هزینه حمل پائین آن باعث شده است تا از لیکا در پر کردن فضاهاى خالى استفاده شود. در کاربردهاى خاص نظیر زیر سازى ساختمان و تسطیح و شیب بندى بام، خواص عایق حرارتى و دوام لیکا مشخصات فنى مناسبى براى آن فراهم مى کند. در راهسازى نیز از تراکم ناپذیرى لیکا براى کنترل نشست پلاستیک بسترهاى سست استفاده مى شود. همچنین جذب آب مناسب ، تخلخل و دوام لیکا آن را براى کشاورزى بدون خاک مناسب ساخته است. همین خواص باعث شده است تا در تصفیه فاضلابهاى خانگى از فیلترهاى ساخته شده از لیکا استفاده شود

 ویژگیهاى بتن لیکا

خواص لیکا باعث شده است تا بتن سبک لیکا کاربردهاى فراوانى داشته باشد. مهم ترین ویژگى هاى بتن لیکا عبارتند از:وزن کم، سهولت حمل و نقل، بهره ورى بالا هنگام اجرا، سطح مناسب براى اندود کارى، مقاومت و باربرى، عایق حرارت، مقاومت در برابر آتش، عایق صدا ،‌مقاومت در برابر یخ زدگى، بازدارندگى در برابر نفوذ رطوبت و دوام در برابر مواد آهکى

متناسب با وزن و مقاومت مورد نظر از بتن سبک لیکا به عنوان پر کننده ، عایق و یا باربر استفاده مى شود. بتن لیکا مى تواند در جا ریخته شود و یا بصورت بلوک، اجزاى ساختمانى وسایر قطعات پیش ساخته بکار رود. در هر مورد متناسب با کاربرد و روش اجرا از دانه بندى هاى مناسب لیکا استفاده مى شود
بتن هاى پر کننده و عایق اغلب در پى سازى و زیر سازى ساختمان، شیب بندى کف و بام، بلوک ها یا اجزاى دیوارهاى جدا کننده و محیطى غیرباربر به کار مى روند
در حالى که از بتن هاى سبک سازه اى – که البته عایق نیز خواهند بود- در ساخت اجزاى مقاوم نظیر بلوک هاى باربر، پانل هاى دیوارى و سقفى مسلح و نیز اسکلت بتن مسلح ساختمانها استفاده مى شود. قابل توجه است که به دلیل الزامات مقاومت و دانه بندى ، تنها با استفاده از دانه هاى لیکا مى توان در ایران بتن سبک سازه اى ساخت

لیکا در شیب بندى کف و بام

لیکا دانه هاى مدور و سبک رس منبسط شده ایست که در کوره هاى گردان و در حرارت بالاى 1100درجه سانتى گراد در یکى از مدرن ترین واحدهاى صنعتى ایران تولید مى شود. لیکا فى الواقع پوکه ایست صنعتى و داراى کاربردهاى وسیع در ساختمان و کشاورزى

ویژگیهاى پوکه صنعتى لیکا

دانه هاى لیکا بشکل تقریبأ مدور و با سطحى زبر و ناهموار است. قشر میکروسکپى  خارجى آن قهوه اى و داحل دانه ها بشکل بافت سلولى و برنگ سیاه است

دانه هاى تولیدى کارخانه در اندازه هاى متفاوت و کلأ در چهار نوع دانه بندى (20-10, 10-3, 3-0) میلى متر و مخلوط(20-0) عرضه مى گردد

وزن فضایى دانه هاى خشک لیکا بصورت فله و براى دانه بندى 20-10میلى متر حدود 330کیلوگرم در متر مکعب است، این سبکى بعلت هواى موجود بین و داخل دانه هاست که بر حسب دانه بندیها بین 73تا88درصد فضاى کل را اشغال مى کند

ویژگیهاى مهم دانه هاى لیکا بشرح زیر است

- فوق العاده سبک است

- غیر قابل احتراق و فسادناپذیر است

- بهترین عایق حرارتى است که تعادل گرما و سرما را در فصول مختلف در داخل ساختمان برقرار مى کند

- عایق فوق العاده مناسبى براى صدا است

بهترین ماده شناخته شده براى جلوگیرى ار نفوذ رطوبت است

- مقاومت بسیار عالى در مقابل یخ زدگى

در مقابل فشار مکانیکى دائمى فشرده نمى شود و نسبت درصد هواى موجود ثابت مى ماند

- ضریب انتقال حرارتى دانه هاى لیکا بصورت فله بر حسب دانه بندیها بین 9 00  تا 0101 W/M.k متغیر است

 

کاربرد لیکا در صنعت ساختمان

براى شیب بندى کف و پشت بام: پوکه صنعتى لیکا بهترین مصالح ساختمانى براى پوشش کف و سقف پشت بام است. کاربرد انجام پذیر بوده و طریقه مصرف آن کاملأ براى معماران و مهندسین شناخته آن بسادگى شده است . لایه لیکا که بضخامت حدود 10تا15سانتى متر بکار گرفته مى شود بدو طریق سفت مى گردد

در حالت کارهاى بزرگ 
نخست دانه ها با پاشیدن آب خیس و سپس بصورت آزاد و یا در داخل بتونیر با سیمان مخلوط مى شود. عیار مخلوط بازاى یکصد کیلوگرم لیکا حدود 16کیلوگرم سیمان است

به این مخلوط آنقدر آب اضافه مى کنند تا رنگ آن بصورت حاکسترى تند و شفاف در بیاید

مخلوط در محل کار قرار مى گیرد و به آرامى با تخته کوب تسطیح مى شود
بمنظور جلوگیرى از خشک شدن ، این مخلوط تسطیح شده بطور منظم آب پاشى و یا با ورقه پلاستیکى پوشانده مى شود

 

برای دریافت پروژه اینجا کلیک کنید
» نظر

پروژه دانشجویی مقاله تولید ناب و انبوه در word

 

برای دریافت پروژه اینجا کلیک کنید

 پروژه دانشجویی مقاله تولید ناب و انبوه در word دارای 30 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد پروژه دانشجویی مقاله تولید ناب و انبوه در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه پروژه دانشجویی مقاله تولید ناب و انبوه در word

مقدمه

تولید دستی

تولید انبوه

تولید ناب

کارخانه مونتاژ نهایی

زنجیره عرضه

طراحی قطعات در تولید انبوه

طراحی قطعات در تولید ناب

عرضه ناب در عمل

شیوه های طراحی در تولید انبوه و ناب

طرز کار کارخانه

سازماندهی ناب در سطح کارخانه

رفتار با مشتری

نتیجه گیری

منابع و ماخذ

 تولید دستی

یک تولیدگر دستی از کارگران بسیار ماهر و ابزارهای ساده اما انعطاف پذیر استفاده می کند تا دقیقا آنچه را بسازد که مشتری میخواهد. یعنی یک واحد در یک زمان برخی مشخصه های تولید دستی عبارتند از

1 – وجود نیروی کاری ماهر;

2 – وجود سازماندهی بسیار غیرمتمرکز;

3 – به کارگیری ابزارآلات ماشینی چندکاره ;

4 – حجم بسیار پایین تولید.

همچنین از ضعفهای تولید دستی این است که قیمت محصول بالا بوده و در صورت افزایش حجم تولید، قیمت پایین نمی آید. (امروزه در مورد ماهواره ها و سفینه های فضایی که برجسته ترین تولیدات دستی هستند همین مشکل وجود دارد)

از مشکلات دیگر تولیدکنندگان دستی این است که معمولا فاقد آن سرمایه مالی وانسانی کافی هستند که به دنبال نوآوریها و پیشرفتهای اساسی باشند چرا که پیشرفت واقعی در دانش فنی مستلزم تحقیق و پژوهش سازمان یافته است

اما بااین حال محصولات دستی و سفارشی همچنان بازار خود را حفظ کرده است چرا که برخی از مشتریان نیازها و سلیقه های خاصی دارند که فقط این شیوه تولیدی پاسخگوی نیازهای آنهاست . اما در دهه 1990 برای شرکتهای تولیدکننده دستی ، تهدیددیگری از جانب شرکتهای تولیدکننده ناب ، به ویژه شرکتهای ژاپنی آغاز شده است و آن تهدید این است که تولیدگران ناب در تعقیب آن بخشی از بازار هستند که تاکنون درانحصار تولیدگران دستی بوده است . برای مثال ، شرکت هوندا با اتومبیلهای ورزشی (NS-x) با بدنه آلومینیومی خود حمله مستقیمی به بازار خودروهای ورزشی (FERRARI) کرده است .

 تولید انبوه

تولیدگر انبوه در طراحی محصولات از متخصصان ماهر استفاده می کند، اما این محصولات توسط کارگران غیرماهر ساخته می شوند که ماشین آلات گران و تک منظوره راهدایت می کنند. این محصولات همشکل ماشینی ، در حجم بسیار بالا تولید می شوند. ازآنجا که تولید محصول جدید محتاج تغییر کل سیستم است ، بسی گرانتر از محصول قبلی خواهد شد. از این رو تولیدکننده انبوه تا جایی که ممکن باشد، از نوآوری در طرح خودداری می کند. در نتیجه اینکه محصول ، به قیمت از دست رفتن تنوع و به دلیل وجودروشهای کاری که برای کارکنان کسالت بار است ، ارزانتر در اختیار خریدار قرار می گیرد.برخی از مشخصه های تولید انبوه عبارتند از

نیروی کار: تقسیم کار تا هرجا که امکان دارد. در کارخانه های با تولید انبوه ، کارگرمونتاژکننده تنها به چند دقیقه تعلیم و آموزش نیاز دارد;

سازماندهی : بااستفاده از یک ادغام عمودی کامل ، تولیدکننده انبوه سعی می کند که از مواداولیه تا سایر قطعات را خود تولید کند. ولی مشکل ادغام عمودی کامل ، دیوان سالاری وسیع است ;

ابزارها: از ابزارآلاتی که فقط در هر زمان یک وظیفه را انجام می دهد استفاده می کند که این کار صرفه جویی زیادی در زمان آماده سازی ماشین آلات به وجود می آورد

محصول : محصولات تنوع کم دارند ولی قیمتهای آن به خاطر تنوع کم روند نزولی پیدامی کند

تولید ناب

زادگاه تولید ناب در شرکت تویوتا(1) در جزیره ناگویا در ژاپن است . نخستین پیروزی خانواده تویودا در صنعت ماشین آلات نساجی بود و در دهه 1930 به دلیل نیاز شدیددولت شرکت مذکور وارد صنعت وسایل نقلیه موتوری گردید در آن سالها این شرکت بامشکلاتی از قبیل بازار داخلی کوچک ، نیروی کار ثابت ، فقدان سرمایه کافی و رقبای خارجی علاقه مند به بازار ژاپن روبرو بود

در آن سالها، آی جی تویودا (EIJI TOYODA) با مهندس شرکت تاای چی اوهنو به آمریکا سفر کرده واز شرکت اتومبیل سازی فورد بازدید به عمل آوردند و نهایتا به این نتیجه رسیدند که اصول تولید انبوه قابلیت پیاده سازی در ژاپن را ندارد و این سیستم پر ازمودا MUDA(اتلاف ) است . برهمین اساس ، آنها شیوه جدید از تولید که بعدها تولید ناب نام گرفت را ایجاد کردند

یک تولیدگر ناب مزایای تولید دستی و تولید انبوه را با یکدیگر تلفیق کرده و ازقیمت بالای اولی و انعطاف ناپذیری دومی اجتناب می کند و از ماشین آلاتی استفاده می کند که هم خودکار و هم انعطاف پذیرند. برخی از مشخصه های تولید ناب عبارتند از

1 – استفاده از JIT;

2 – تاکید بر پیشگیری از تولید محصول معیوب ;

3 – پاسخ به نیازهای مشتریان ;

4 – کایزن ;

5 – سیستم افقی ارتباطات ;

6 – افزایش ادغام وظایف .

اما مهمترین تفاوت میان تولید انبوه و تولید ناب ، تفاوت در اهداف نهایی این دواست . تولیدگر انبوه هدف محدودی که <به اندازه کافی خوب بودن > است را دارد وبه عبارتی دیگر: <شمار قابل قبول عیبها>، و همچنین بیشترین سطح قابل قبول برای موجودی و گستره معینی از محصولات یکسان اما اندیشه تولیدکننده ناب بر <کمال >است ، یعنی نزول پیوسته قیمتها، به صفر رساندن میزان عیوب ، به صفر رساندن موجودی ،تنوع بی پایان محصول !

کارخانه مونتاژ نهایی

 

برای دریافت پروژه اینجا کلیک کنید
» نظر

پروژه دانشجویی پایان نامه تستهای غیرمخرب جوش و کاربرد روش (TDN)

 

برای دریافت پروژه اینجا کلیک کنید

 پروژه دانشجویی پایان نامه تستهای غیرمخرب جوش و کاربرد روش (TDN) در بازرسی قطعات فورج در word دارای 102 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد پروژه دانشجویی پایان نامه تستهای غیرمخرب جوش و کاربرد روش (TDN) در بازرسی قطعات فورج در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه پروژه دانشجویی پایان نامه تستهای غیرمخرب جوش و کاربرد روش (TDN) در بازرسی قطعات فورج در word

2- معرفی عمومی روشها  
2-1- آشنایی  
2-2- آزمون چشمی  
2-3- آزمون فشار و نشت  
2-4- بازرسی با مایع نفوذکننده (LP)  
2-5- روشهای حرارتی  
2-6- بازرسی با تشعشعات صوتی (AE)  
2-7- بازرسی با امواج مایکرو  
2-8- آزمون فراصوتی  
2-9- روشهای مغناطیسی  
2-9-1- بازرسی با ذره های مغناطیسی  
2-10- بازرسی با جریان گردابی (EC)  
2-11- پرتونگاری  
3- بازرسی با مایع نفوذکننده (LP)  
4- بازرسی با تشعشعات صوتی (AE)  
4-1- گستره کارایی  
4-2- امواج AE و انتشار آنها  
4-3- حسگرهای AE و پیش تقویت کننده ها  
5- بازرسی با امواج مایکرو  
5-1- کاربردهای بازرسی با امواج مایکرو  
6- آزمون فراصوتی  
6-1- تولید امواج فراصوتی  
6-2- مزایا و معایب آزمون فراصوتی:  
6-3- کاوشگرهای آزمون فراصوتی  
6-3-1- کاوشگر عمودی  
6-3-2- کاوشگر زاویه دار (مایل)  
6-4- نمایش فراصوتی  
6-5-1- روش بازتابی با کاوشگر عمودی  
6-5-2- روش عبوری با کاوشگر مایل  
6-6- کاربرد آزمون فراصوتی  
7- بازرسی با ذره های مغناطیسی  
7-1- مغناطیسه کردن  
8- بازرسی با جریان گردابی (EC)  
8-1- مزایا و محدودیت های بازرسی با جریان گردابی  
8-2- EC در مقابل روشهای بازرسی مغناطیسی  
8-3- پیشرفت فرآیند بازرسی EC  
8-4- اصول کاربری  
8-4-1- عملکردهای یک سیستم بازرسی ابتدایی  
8-5- متغیرهای کاری  
8-5-1-  مقاومت ظاهری سیم پیچ  
8-5-2- رسانایی الکتریکی  
8-5-3- نفوذپذیری مغناطیسی  
8-5-4- عامل خیز  
8-5-5- عامل پر شدن  
8-5-6- اثر لبه  
8-5-7- اثر پوسته  
8-6- بسامدهای بازرسی  
8-7- روشهای چندبسامدی  
8-7-1- روشهای ابزارشناسی  
8-7-2- انتخاب بسامد و آرایش سیم پیچ  
8-7-3- روشهای چندپارامتری  
8-8- سیم پیچ های بازرسی  
8-8-1- سیم پیچ های کاوشگر و محیطی  
8-8-2- سیم پیچ های چندگانه  
8-8-3- آرایش absolute  
8-8-4- آرایش تفاضلی  
8-8-5- اندازه ها و اشکال  
دستگاههای EC  
8-9-1- عملکردهای سیستم دستگاه  
8-10- ناپیوستگی های قابل تشخیص به روش بازرسی EC  
8-10-1- نمونه های مرجع  
8-11- تحلیل فازی  
8-12- روشهای نمایش  
9- پرتونگاری  
9-1- کاربردهای پرتونگاری  
9-2- اصول پرتونگاری  
9-3- پردازش فیلم پرتو X  
9-4- پرتوهای X و   
9-5- محدودیت های پرتونگاری  
10- کاربرد روشهای NDT در بازرسی قطعات فورج  
10-1- مقدمه  
10-2- عیوبی که در شمش ایجاد می شوند  
10-2-1- جدایش شیمیایی  
10-2-2- نایچه شمش و انقباض مرکزی  
10-2-3- مقدار هیدروژن بالا  
10-2-4- آخال های غیرفلزی  
10-2-5- الکترودهای ذوب نشده و shelf  
10-3- نواقص ناشی از فراوری شمش یا بیلت  
10-3-1- ترکیدگی ها  
10-3-2- چین ها  
10-3-3- درزها  
10-4- نواقص ناشی از عملیات فورج  
10-5- انتخاب روش بازرسی  
10-5-1- اثر نوع فورج  
10-5-1-1- فورج قالب باز  
10-5-1-2- فورج قالب بسته و فورج افقی  
10- 5-1-3- Ring–rolled forging  
10-6- اثر ماده فورج  
10-6-1- قطعات فورج فولادی  
10-6-2- قطعات فورج آلیاژهای گرمکار  
10-7- بازرسی چشمی  
10-8- بازرسی با ذرات مغناطیسی  
10-8-1- مزایا و محدودیت ها  
10-8-2- تشخیص ناپیوستگی های سطحی  
]10-9- بازرسی با مایعات نفوذکننده  
10-9-1- مزایا و محدودیت ها  
10-9-2- تشخیص نواقص در فورج فولاد با بازرسی با مایعات نفوذکننده  
10-9-2-1- سیستم Postemulsifiable  
10-9-2-2- سیستم Solvent-removable  
10-9-2-3- تشخیص نواقص در قطعات فورج آلیاژهای گرمکار به روش مایعات نفوذکننده  
10-10- بازرسی فراصوتی  
10-10-1- اشکال پیچیده  
10-10-2- کاربرد  
10-10-3- رویه های ابتدایی برای بازرسی فراصوتی  
10-10-3-1- تجهیزات  
10-10-4- بازرسی فراصوتی با موج طولی  
10-10-5- بازرسی فراصوتی با موج برشی  
10-10-6- بازرسی فراصوتی برای فورج های خاص  
10-10-6-1-1- روش بازرسی  
10-10-6-2- مثال بازرسی فراصوتی برای فورج محوری از فولاد  
10-10-6-2-1- تجهیزات تعیین شده  
10-10-6-2-2- آماده سازی سطحی  
10-10-6-2-3- رویه بازرسی  
10-10-6-3- مثال بازرسی محور فولاد 4118 فورج افقی  
10-11- روش جریان گردابی و بازرسی مغناطیسی  
10-11-1- تشخیص عیوب  
10-11-2- مزایا و معایب  
10-11-3- تشخیص تغییرات ریز ساختار  
10-11-3-1- مزایا و معایب  
10-12- بازرسی پرتونگاری  
11- مراجع  

بخشی از منابع و مراجع پروژه پروژه دانشجویی پایان نامه تستهای غیرمخرب جوش و کاربرد روش (TDN) در بازرسی قطعات فورج در word

 1- جان، ورنون، آزمون مواد، ترجمه علی حائریان و محسن کهرم، دانشگاه فردوسی مشهد، 1375

2- Mc Gonnagle, Warren J., Nondestructive Testing, USA,

3- ASM Metals Handbook, Vol.17, Nondestructive Evaluation and Quality Control, USA,       1978

4- Bray, Don E. & Stanley, Roderick K., Nondestructive Evaluation, USA,

5- بری،هال وجان، ورنون، آزمونهای غیرمخرب، ترجمه مجتبی ناصریان ریابی، تهران، 1375

2-1- آشنایی

آسیبهایی که  هنگام  تولید  یا ماشین کاری  مواد  و قطعات  به  آنها  وارد  می شود، به  صورت نقصهایی از قبیل ترک، تخلخل و ناخالصی ظاهر می شوند، در حالی که نقصهای دیگر مثل ترک خستگی، ضمن کار به وجود می آیند. تشخیص و آشکارسازی این گونه آسیبها ضروری است و لازم است محل و اندازه آنها به دقت مشخص گردد تا امکان تصمیم گیری  برای رد و قبول قطعه فراهم شود

روشهای چندی به عنوان  روشهای آزمون  غیرمخرب (NDT)‌[1] برای بازرسی  مواد  و قطعات  به کار می‌روند. تمام این روشها، بسته به کاربردشان، می توانند به تنهایی یا همراه با آزمونهای دیگر به کار روند. گر‌چه آزمونهای مختلف فصل مشترکهایی نیز دارند، اما هر آزمون مکمل آزمونهای دیگر است. برای مثال، هرچند آزمون فراصوتی می تواند مویه های سطحی و درونی قطعه را آشکار سازد، اما نباید چنین نتیجه بگیریم که این آزمون لزوماً بهترین روش موجود برای تمامی بازرسی هاست. درانتخاب دستگاه مناسب آزمون، بسته به نوع ترک، شکل و اندازه قطعه باید مورد توجه قرار گیرد

توضیح  عمومی ظاهر  و منشأ ترکها  ممکن است  مفید باشد. ترکها  می توانند بین دانه ای  یا درون دانه ای باشند. ترکهای ناشی  از کوئنچ  معمولاً  در دسته دوم جای می گیرند. در برخی موارد بخشی از مسیر گسست، دانه  را  قطع می کند و بخشی از مرزدانه می گذرد. ترکها ممکن است در جهات بسیار مختلفی و همچنین در مواضع بسیار متنوعی گسترش یابند. فضای داخلی ترکها ممکن است خالی، پر از محصولات اکسیدی یا پر از مواد خارجی باشد. انواع معمول ترکها و علل آنها به این صورت فهرست می شوند: ترکهای ناشی از کوئنچ یا سختکاری که به دلیل تغییرات حجمی سریع به وجود می آیند، ترکهای باز‌پخت[2] که در حرارت دهی سریع ایجاد می شوند، ترکهای انقباضی ناشی از سردکردن بسیار سریع، پارگی های گرم[3] ناشی از طراحی نامناسب قالب و روش ناصحیح ریختن مواد، ترکهای سنگ زنی[4] ناشی از حرارت موضعی اصطکاک چرخ سنباده، همچنین امکان دارد ترکها در اثر تنش های پسماند، کاهش زیاد در کار سرد، فورج نامناسب، چینها[5]، آخالهای زود ذوب، جدایش[6]، طراحی ناصحیح، نورد نامناسب، حبابهای محبوس شده هوا، لبه های تیز قالب و حک کاری[7] به وجود آمده باشند. در میان عیوب سطحی، سردجوشی[8]، چینها، چین خوردگی سطحی فلزات[9]، درزها[10]، ترکهای مویی و خراشها[11]، قرار دارند

2-2- آزمون چشمی

معمولاً  اولین مرحله  بازرسی یک  قطعه، بازرسی چشمی است. این بازرسی  با چشم  غیرمسلح صورت می‌گیرد و فقط آسیبهای نسبتاً بزرگ را مشخص می کند که به صورت شکستگی روی سطح دیده می شوند. کارایی این گونه بازبینی ها برای سطوح خارجی، با استفاده از ذره بین و میکروسکوپهای دید سه بعدی تا حد قابل ملاحظه ای افزایش می یابد.این روش پرکاربردترین روش NDT است، بسیار ساده است و انجام آن به آسانی و با سرعت بالا و قیمت پایین مسیر است

2-3- آزمون فشار و نشت

در این آزمون، عیوب  توسط  جریان یافتن گاز یا  مایع به درون  نقایص آشکار می شوند. ساده- ترین و پرکاربردترین آزمون فشار، آزمون هیدروستاتیک است. در این آزمون فشار داخلی قطعه تحت آزمون تا مقداری بیش از فشار خارجی بالا می رود. مثالی ساده از این روش، روشی است که در ایستگاه- های سرویس برای پیدا کردن سوراخها و رخنه های داخلی تیوب لاستیک اعمال می شود. در این روش، تیوب از گازی با فشار بالاتر از هوای اطراف پر می شود و سوراخها و منافذ با غوطه‌ورسازی تیوب در آب و تشکیل حباب مشخص می گردند. آب، روغن یا هوا و دیگر گازها می توانند برای ایجاد فشار به کار روند. فشار انبساطی هوای متراکم یا سایر گازها نسبتاً بالاست. چون همواره احتمال تخریب قطعه تحت آزمون وجود دارد، استفاده از هوا و دیگر گازها برای آزمون جز در شرایط ویژه توصیه نمی شود. از اقسام کاربردی این آزمون، آزمون هیدروستاتیک، آزمون حباب، آزمون نشت هالوژن و روشهایی است که مواد رادیواکتیو به کار می برند

2-4- بازرسی با مایع نفوذکننده (LP[12])

این آزمون برای تشخیص ناپیوستگی ها و نقص های سطحی یا عیوبی است که تا سطح قطعهکار گسترش می یابند. استفاده از مایعات نفوذ کننده می تواند به عنوان بازرسی چشمی گسترش یافته، مورد توجه قرار گیرد. نقایص بسیار اندکی وجود دارند که به این روش قابل تشخیص باشند اما با چشم غیرمسلح دیده نشوند. اما مایعات نفوذکننده باعث می شوند که بازرسی، وابستگی کمتری به عامل انسانی داشته باشد. این امر فرآیند را به آزمون تولید سازگارتر می نماید زیرا اطمینان و سرعت بازرسی بالا می رود. این روش برای همه فلزات و همچنین سرامیکهای لعابدار، پلاستیکها و دیگر مواد متخلخل قابل اعمال است. روش بازرسی با مایعات نفوذکننده هم برای مواد مغناطیسی و هم مواد غیرمغناطیسی کاربرد دارد، در حالی که بازرسی با ذرات مغناطیسی در این زمینه محدودیت دارد. محدودیت و عیب اصلی این روش این است که تنها نقایص سطحی یا نقایصی را که به سطح می رسند، آشکار می- نماید

2-5- روشهای حرارتی

در این  روشها  پس از اعمال حرارت، توزیع دمای حاصل  مورد بررسی قرار  می گیرد. نقایص،توزیع دمایی قطعه کار را تغییر می دهند. اعمال حرارت می تواند به روشهای چندی از جمله تماس حرارتی مستقیم با منبع حرارتی، جریان الکتریسیته، القای حرارت و منابع نور فروسرخ صورت گیرد. توزیع دمای حاصل با استفاده از موادی چون موم، استئارین، فسفرهای حساس به حرارت، مواد رسانای نور و یا ابزارهایی چون گرماسنج و ترموکوپل یا روشهایی چون تشکیل اکسیدهای خالص و منجمد کردن قابل بررسی است

2-6- بازرسی با تشعشعات صوتی (AE)

تشعشعات صوتی، امواج نشی هستند که با حرکت اگهانی در مواد تنش‌دار ایجادمی شود

منابع کلاسیک تشعشعات صوتی، فرآیندهای تغییر شکل مربوط به نقص است مانند رشد ترک و تغییر شکل پلاستیک. حرکت ناگهانی در منبع، یک موج تنش تولید می کند که در ساختار ماده  منتشر می- شود و یک  ترانسدیوسر پیزو‌الکتریک حساس  را  تحریک می نماید. وقتی تنش ماده بالا می رود، بسیاری از این تشعشعات  به وجود می آیند.  سیگنال های  ناشی از  یک  یا چند  حسگر[13]  تقویت  و  اندازه گیری می شوند تا داده‌هایی برای نمایش و تفسیر به وجود آید

2-7- بازرسی با امواج مایکرو

مایکروموج ها (امواج رادار)  شکلی از تابش های الکترومغناطیس  هستند که  در طیف  الکترو-مغناطیسی جای دارند. گستره  بسامدی  این  امواج  بین  MHz 300 و GHz 325  است. این گستره  بسامد مربوط به طول موج هایی بین Cm 1000 و mm 1 است

یکی از اولین کاربردهای  مهم امواج  مایکرو برای  رادار  بود. اولین کاربرد  آنها  در NDT برایاجزایی مثل موج بر[14]، میراکننده ها[15] ، محفظه ها، آنتن ها و پوشش آنتن رادار بوده است. واکنش متقابل بین انرژی الکترومغناطیسی مایکروموج با ماده شامل اثر ماده روی میدانهای الکتریکی و مغناطیسی تشکیل دهنده موج الکترومغناطیسی است. به عبارتی اثر میدانهای الکتریکی و مغناطیسی روی هدایت ویژه[16]، ثابت دی الکتریک[17] و نفوذپذیری[18] ماده است

2-8- آزمون فراصوتی

 روشهای فراصوتی  به طور گسترده ای  در آشکارسازی  نقصهای  درونی مواد  مورد استفاده قرار می گیرند. از این روشها برای جستجوی ترکهای کوچک سطحی نیز بهره می گیرند. برای بازرسی کنترل کیفی مواد نیمه تمام از قبیل تختالهای نورد شده و همچنین بازرسی قطعات تمام شده می توان این روش را به کار برد و برای بازرسیهای منظم ضمن خدمت قطعات و مجموعه ها نیز روشی مناسب است

در این روش پرتو فراصوتی توسط مبدل پیزوالکتریک تولید می شود و پس از عبور از درون فلز، در برخورد به دورترین سطح آن یعنی فصل مشترک فلز با هوا بازتاب کامل می یابد. علاوه بر این بخشی از پرتوها و یا تمام آنها در برخورد با هر سطح مشترک داخلی دیگر مثل مویه ها، لایه ها، تخلخل و آخالها انعکاس می یابند. با نمایش  و تفسیر این انعکاس ها، درک  صحیحی از  نقایص  موجود  به دست می آید

2-9- روشهای مغناطیسی

ناهمگنی هایی  مثل حفره های  هوا، ترکها و آخالهای  موجود  در  ماده  مغناطیسی  در  میدانمغناطیسی القایی اعوجاج ایجاد می کنند. مسیر شار مغناطیسی به علت متفاوت بودن خواص مغناطیسی ناهمگنی- ها از  ماده اطراف، دچار اعوجاج  می شود. همه روشهای  مغناطیسی NDT  وسایل و راه هایی را  به کار می گیرند که این اعوجاج که غالباً شار نشتی[19] نامیده می شود، قابل تشخیص و اندازه- گیری باشد. یکی از راههای ساده تشخیص اعوجاج در میدان، حرکت دادن قطعه در بالای یک مگنت است

عیب این روش، حساسیت پایین و اعمال مشکل آن در آزمونهای سریع                                       و مقیاس بالاست. این عمل می- تواند با حرکت دادن سیم پیچ کاوشگر در           بالای قطعه کار و یا قطعه کار از خلال سیم پیچ صورت گیرد. اعوجاج شار، ولتاژ القایی را در سیم پیچ تغییر خواهد داد. روش دیگری که با استفاده از آن اعوجاج میدان مغناطیسی قابل کشف است، استفاده از پودر نرم مغناطیسی است

2-9-1- بازرسی با ذره های مغناطیسی

این بازرسی، روشی حساس برای  ردیابی نقصهای  سطحی و برخی نقصهای  زیرسطحی  قطعات فرومغناطیس است.این بازرسی ساده و آسان است. محدودیتی از نظر اندازه و شکل قطعه، ترکیب شیمیایی و عملیات حرارتی ندارد. دو گام اصلی، مغناطیده کردن ماده و اعمال ذرات مغناطیسی است. ذرات مغناطیسی نرم می تواند خشک یا معلق در مایع باشد. اگر عیب سطحی یا زیرسطحی باشد، یک دوقطبی مغناطیسی تشکیل می شود که مشابه مگنت های کوچک عمل می نماید. پودر مغناطیسی جذب شده و توسط شار عبوری نگه داشته می شود، بنابراین نشانه واضحی از موضع و وسعت نقص است

 

2-10- بازرسی با جریان گردابی (EC)

بازرسی با  جریان گردابی بر مبنای اصول القای الکترومغناطیسی است و  برای تعیین انواعی از ویژگیهای فیزیکی، ساختاری و متالورژیکی در فلزات فرومغناطیس و غیرفرومغناطیس و قطعات مختلف فلزی به کار می رود. وقتی یک سیم پیچ حامل جریان متناوب به قطعه کار فلزی نزدیک می شود، جریانهای گردابی توسط القای الکترومغناطیسی در فلز القا می شوند. مسیر جریان های گردابی در صورت وجود نقص یا ناهمگنی های دیگر دچار اعوجاج می شود. مقاومت ظاهری سیم‌پیچ در حضور نقص تغییر می کند و این تغییر مقاومت ظاهری می تواند به عنوان نشانه عیوب یا تفاوت در ساختار فیزیکی، شیمیایی اندازه گیری شده و به کار رود

2-11- پرتونگاری

پرتونگاری آزمونی غیرمخرب با استفاده از پرتوهای X و است. این روش یکی از پرکاربردترین روشهاست. ویژگی هایی از قطعات و سازه ها که منشا تغییر کافی ضخامت یا چگالی باشند به این روش قابل تشخیص هستند

در بازرسی پرتونگاری، جسم مورد آزمایش در مسیر تابش پرتوهای چشم X یا قرار می گیرد

یک وسیله سنجش شدت اشعه در نزدیکی قطعه قرار می گیرد. شدت اشعه عبوری از بخشهای مختلف قطعه متفاوت است که بر اساس تاثیر پرتوها بر روی صفحه حساس -برای مثال فیلم- نواقص موجود در قطعه تحلیل و بررسی می شوند

3- بازرسی با مایع نفوذکننده (LP[20])

در این روش، مایع نفوذ کننده بر روی جسم توزیع می شود. آسیبهای سطح با جذب مویینگی قسمتی از مایع را به درون خود می کشند و آن را به صورت شکستگی سطحی، قابل رویت می نمایند. برای رویت بهتر، مایع توسط یک رنگ روشن و قابل دید و یا ترکیبات فلورسنت رنگی می شود. در حالت اول معمولاً رنگ قرمز به کار می رود اما در حالت دوم برای دیدن نقصها به نور فرابنفش نیاز است بازرسی با مایعات نفوذکننده از روشهای مهم صنعتی است که برای مشخص کردن انواع نقصهای سطحی از قبیل ترکهای سنگ زنی، جوشکاری، سردجوشی، تخلخل، عدم اتصالها، روزنه های سوزنی[21] در جوشها، چینها، ترکیدگی های فورج[22]، تورق[23] و ; به کار می رود. تشخیص نواقص باز کم عمق یا پهن مشکل است چون نفوذکننده به راحتی خارج می شود. هیچ ماده خارجی که منافذ را ببندد نیز نباید روی سطح باشد

 3-1- اصول بازرسی با مایع نفوذکننده اصول بازرسی نفوذی دارای پنج مرحله اساسی است:الف: آماده سازی سطح ب: به کاربردن مایع نفوذکننده ج: تمیز کردن مایع اضافی

د: آشکارسازی

ه: مشاهده و بازرسی

  پیش از بازرسی، سطوح قطعه باید به خوبی تمیز و کاملاً خشک شوند. لازم است سطوح موردآزمایش کاملا عاری از روغن، آب، گریس و یا هر آلوده کننده دیگری باشد. پس از آماده سازی، مایع نفوذکننده به روشی مناسب روی سطح مالیده می شود طوری که لایه نازکی از مایع، سطح قطعه را به طور کامل بپوشاند. روشهای گوناگونی برای پوشاندن سطح قطعه توسط مایع نافذ وجود دارد که انتخاب روش به اندازه، شکل و تعداد قطعات بستگی دارد. در قطعات کوچکی که تعدادشان زیاد است، از مخزن محتوی مایع استفاده می‌شود که قطعات درون مخزن فرو می روند. در بازرسی قطعات منفرد و یا در محل کار از قلم مو یا اسپری کم فشار استفاده می شود. در مویه های بزرگ نفوذ مایع سریع است اما در مویه های کوچک بعضاً  تا 30 دقیقه  زمان برای نفوذ  لازم است. در مرحله بعد، مایع  اضافی از روی سطح قطعه  پاک می شود. بعضی از مایعات را می‌توان با آب شست اما در مورد برخی دیگر نیاز به حلال مخصوص است

در مرحله آشکارسازی معمولاً گرد بسیار نرم گچ است که به صورت خشک یا معلق در یک مایع فرار قابل استفاده است. پس از افشاندن گچ، لایه نازکی سطح قطعه را می پوشاند. مایع نفوذ کننده درون ترکها توسط عمل مویینگی به فضای بین ذرات گچ کشیده می شود و تا حدودی در ماده آشکارساز  پخش می گردد و موجب  بزرگنمایی اندازه مویه می شود. رنگ مایع نفوذکننده باید متفاوت از زمینه گچی باشد. چنانچه مایع نفوذکننده فلورسنت باشد، مرحله آشکارسازی قابل حذف است. در حالت کلی 30-10 دقیقه زمان برای آشکارسازی نیاز است. مشاهده و بازرسی قطعات، در کار با مایع نفوذکننده رنگین، زیر نور شدید صورت می‌گیرد و در مورد نافذهای فلورسنت به محلی تاریک و نور فرابنفش نیاز است

در مورد ترکهای  فورج از دو  ماده تجاری  می‌توان استفاده کرد. مدت اعمال این مواد  متفاوت است. Zyglo-pentrex ماده ای است که به مدت 20 دقیقه بر روی قطعات اعمال می شود و مایع نفوذ کننده Dye-Chek نیز می تواند به مدت 10-7 دقیقه برای تشخیص ترکهای فورج بر سطح قطعات مالیده شود

تشخیص نقص های زیر سطح به این روش ممکن نیست و لازم است از روشهای دیگر بازرسی استفاده شود. عوامل دیگری چون زبری و تخلخل سطحی نیز کاربرد این روش را محدود می کند. در مورد تخلخل سطحی، هر منفذ تخلخل ممکن است به صورت یک نقص نمودار شود. انواع قطعاتی که با این روش مورد بررسی قرار می گیرند، عبارتند از: دیسکهای چرخان توربین و تیغه ها و چرخهای هواپیما. قطعات ریختگی و فورج آلومینیومی مثل پیستون و سرسیلندرها از جمله قطعاتی هستند که پیش از مونتاژ به این روش بازرسی و کنترل کیفیت می شوند

4- بازرسی با تشعشعات صوتی (AE[24])

 منبع انرژی تشعشع صوتی، میدان تنش الاستیک درون ماده است. بدون تنش، تشعشعی وجود نخواهد داشت. بنابراین در بازرسی با تشعشعات صوتی(AE) معمولاً بارگذاری کنترل شده‌ا ی بر روی ساختار صورت می گیرد. این بارگذاری می تواند یک بار ثابت باشد در زمانی که قطعه در حال کار نیست یا بار متغیر و کنترل شده‌ای در ضمن خدمت قطعه باشد، بارگذاری آزمون خستگی باشد، آزمون خزش باشد و یا یک برنامه بارگذاری پیچیده به کار رود. بازرسی AE اطلاعات با ارزشی در مورد عملکرد ساختار تحت  بارگذاری ارائه  می دهد

 این روش با بیشتر روشهای NDT از دو جنبه کلیدی متفاوت است. اول اینکه سیگنال از درون خود ماده سرچشمه می گیرد نه از یک منبع خارجی. دوم اینکه بازرسی AE حرکت نقص را تشخیص می دهد، حال آنکه بیشتر روشها فقط ناپیوستگی های هندسی موجود را تشخیص می دهند. در این روش لازم نیست ساختار قطعه را برای یافتن نقایص محلی پیمایش نماییم. تنها لازم است که قطعه را به تعداد مناسبی حسگر ثابت با فواصل m 6-1 از یکدیگر متصل نماییم. این امر منجر به صرفه جویی هایی در آزمون ساختارهای بزرگ می شود، چون برای این ساختارها در دیگر روشها به جداکردن عایقها، آلودگی زدایی و ; نیاز است

معمولاً بازرسی کل  ساختار به  این روش، تنها برای تعیین مناطق  دارای  مشکلات  ساختاری صورت می‌گیرد و تعیین دقیق‌تر طبیعت نقایص تشعشع‌ساز با دیگر روشهای NDT میسر خواهد بود

4-1- گستره کارایی

تشعشعات  صوتی  در بزرگترین  مقیاس، وقایع  زلزله ای  هستند  در حالی که  در  کوچکترین مقیاسها حرکت‌های تعداد کمی از نابجایی‌ها را در ماده تنش‌دار می توان در نظر گرفت. در این بین، گستره وسیعی از مطالعات آزمایشگاهی و آزمونهای صنعتی قرار می گیرد

در کاربردهای آزمایشگاهی، آزمون  AE برای کمک به  آزمونهای  مواد  و مطالعه  تغییر شکل و شکست مورد استفاده قرار می گیرد. این آزمون علامت سریعی از واکنش ماده تحت تنش ارائه می دهد که ذاتاً در ارتباط با استحکام، تخریب و شکست است. تردی[25] و ناهمگنی[26] دو عامل عمده ای هستند که منجر به تشعشع زیاد از مواد می شود. مکانیزم های تغییر شکل نرم مانند تجمع ریزحفره ها در فولادهای نرم، با تشعشعاتی اندک همراه است. در آزمونهای تولید، بازرسی AE می تواند هر جا که فرآیندی ماده را تحت تنش قرار داده و تغییر شکل دایمی ایجاد نموده است، مورد استفاده قرار گیرد

در آزمونهای ساختاری، آزمون AE برای مخازن تحت فشار، لوله ها، مخازن ذخیره، ماشین آلات هوایی و فضایی، پلها  و ; کاربرد دارد. مصارف معمول شامل تشخیص ترک، خوردگی، عیوب جوش و تردی مواد است

تجهیزات  AE به  هر حرکتی در بازه بسامد کاری خود (KHz 1200-20) حساس  هستند. این تجهیزات نه فقط رشد ترک و تغییر شکل ماده را تشخیص می دهند، بلکه فرآیندهایی مانند انجماد، اصطکاک، ضربه، سیلان و تغییرات فازی را نیز تشخیص می دهند. بنابراین روشهای AE برای موارد زیر ارزشمند هستند

کنترل جوشکاری در حین فرآیند
تشخیص تماس و سایش ابزار در حین ماشینکاری خودکار
تشخیص سایش و کمبود روغنکاری در تجهیزات دورانی و مطالعات تریبولوژی
تشخیص قطعات و اجزای لق شده
تشخیص و کنترل منافذ و حفره ها
کنترل واکنش های شیمیایی مثل فرآیندهای خوردگی، تبدیلات مایع، جامد و تبدیلات فازی

4-2- امواج AE و انتشار آنها

جابجایی موج  اولیه  اصولاً تابعی  پله ای شکل است که  نظیر تغییر ثابتی است که  در منبع اتفاق افتاده است. سرعت و تنش موج، پالسی شکل است. فرآیندهایی مثل پرش های میکروسکوپی ترک و شکستهای رسوب غالباً در چند میکروثانیه یا کسری از میکروثانیه صورت می گیرد. بنابراین پالس اولیه زمان کوتاهی دارد. موج اولیه از منبع در تمام جهات منتشر می شود که بسته به طبیعت فرآیند منبع، شدیداً جهت دار است. شکل موج اولیه در انتشار به درون محیط به شدت تغییر می نماید و سیگنال ناشی از حسگر شباهت اندکی به پالس اولیه دارد. این تغییر موج AE، هم برای پژوهشگری که به تحلیل تابع منبع علاقمند است و هم برای بازرس NDT که به آزمایش ساختارها علاقه دارد، اهمیت دارد. بیشتر پژوهشگرانی که گرایش مواد دارند، در کنار بازرسان NDT بیشتر به ویژگی های آماری وسیعتر AE علاقمندند و نیاز ندارند که جزئیات دقیق فرآیند منبع را بدانند. این افراد حسگرهای باندباریک و تجهیزات الکترونیکی را به کار می برند که فقط ویژگیهای اندکی از موج دریافتی را اندازه گیری می- نماید اما قادر به پردازش صدها سیگنال در ثانیه است

 

4-3- حسگرهای AE و پیش تقویت کننده ها

عنصر اصلی در حسگرهای تشدیدشونده، بلور پیزوالکتریک (ترانسدیوسر) است که حرکت را به ولتاژ الکتریکی تبدیل می نماید. این بلور به همراه یک wear plate و یک اتصال دهنده در محفظه ای قرار گرفته است. امواج تنش به حسگر برخورد کرده و آن را تحریک می نماید و یک سیگنال الکتریکی به پیش تقویت کننده مجاور می فرستد که سپس به تجهیزات پردازش سیگنال اصلی می رود

5- بازرسی با امواج مایکرو

این امواج  بسیار شبیه  به نور هستند. به خط  مستقیم سیر می کنند، منعکس  می شوند، میشکنند، متفرق می شوند و پراکنده می گردند. چون طول موج مایکروموج ها 105-104 برابر بیشتر از نور است، امواج مایکرو تا عمق زیادی در ماده نفوذ می کنند که این عمق به هدایت ویژه، ثابت دی الکتریک و نفوذپذیری مواد بستگی دارد. امواج مایکرو از تمام مرزهای داخلی منعکس می شوند و با مولکولهای ماده برخورد می نمایند

 

5-1- کاربردهای بازرسی با امواج مایکرو

کاربرد این روش برای ارزیابی خواص  ماده و  ناپیوستگی ها  با ارزیابی غلظت  رطوبت  در مواد دی الکتریک آغاز شد. امواج مایکرو با طول موج مناسب به شدت توسط مولکولهای آب جذب و پراکنده می شدند. وقتی ماده خشک در برابر امواج مایکرو شفاف باشد، اندازه گیری رطوبت به آسانی میسر است

مزایای این  روش در مقایسه  با آزمون فراصوتی[27] و بازرسی با  پرتوهای X (پرتونگاری)[28]، از  قرارزیر است

پاسخ بسامدی نوارپهنی دارد  که ناشی از آنتن های اتصال است

اتصال مناسبی بین ماده و آنتن ها از خلال هوا صورت می گیرد
اتصال به ماده مشکل آلودگی به همراه نخواهد داشت
امواج مایکرو به آسانی در هوا منتشر می شوند، بنابراین در انعکاسهای پی‌در‌پی، انعکاسهای بعدی، انعکاس قبلی را نمی پوشاند
اطلاعات مربوط به دامنه و فاز میکروموج منتشر شده به آسانی قابل حصول است
هیچ تماس فیزیکی بین  ابزار  اندازه گیری  و ماده  تحت آزمون مورد نیاز نیست. بنابراین سطح  می تواند بدون تماس و به سرعت بازرسی شود
سطح می تواند منحصراً با حرکت خودش یا با پیمایش شدن توسط آنتن ها به صورت نوارهایی بررسی شود
امواج  مایکرو می تواند در تعیین مکان  و اندازه  ترکهای مواد  با  اعمال  ملاحظاتی به کار روند
اول اینکه به علت پایین بودن عمق پوسته در بسامدهای امواج مایکرو، ترک سطحی به حساسترین حالت  تشخیص داده می‌شود. دوم اینکه، موضع ترک داخلی که به سطح نمی رسد با تشخیص تنش های زیادی که درست در حدود ترک و در نزدیکی سطح وجود دارند، مشخص می گردد. در نهایت باید گفت که بازرسی با امواج مایکرو به دهانه ترک و بسامدکاربردی بسیار حساس است. بسامدهای بالاتری برای ترکهای کوچکتر مورد نیاز است. اگر بسامد به حد کافی بالا رود، موج حاصل می تواند در ترک منتشر شود و بنابراین پاسخ حاصل به عمق ترک حساس خواهد بود

 محدودیت های این روش نیز از قرار زیرندبه علت ناتوانی این امواج  در نفوذ  عمیق در رساناهایی مانند فلزات، کاربرد آنها  در برخی موارد محدود می شود. برای مثال مواد غیرفلزی که داخل محفظه ای فلزی هستند، از خلال محفظه به آسانی قابل بازرسی نیستند

امواج مایکرو که بسامد پایینی دارند، قدرت نسبتا پایینی در تشخیص عیوب موضعی دارند
اگر آنتن دریافت کننده ای را  با اندازه  مناسب در نظر بگیریم، نقصی که  ابعاد  موثر آن عمدتا
کمتر از طول موج امواج مایکرو است، کاملا تفکیک  نمی شود. نتیجه  اینکه، بازرسی با  امواج  میکرو برای تشخیص  عیوب  خیلی کوچک و برای کاربردهایی که عیوب  در اندازه mm 1/0 یا  کوچکتر هستند، مناسب  نیست. ترکهای نزدیک به سطح با اندازه گیری تنش سطحی که باید در سطح بالایی ترکها بسیار بزرگتر باشند، مشخص می گردند

6- آزمون فراصوتی

[1] – Non-destructive Tests

[2] – Tempering cracks

[3] – Hot tears

[4] – Grinding cracks

[5] – Laps

[6] – Segregation

[7] – Etching

[8] – Cold shut

[9] – Folds

[10] – Seams

[11] – Scratches

[12] – Liquid Penetrant Test

[13] – Sensor

[14] – Waveguide

[15] – Attenuators

[16] – Conductivity

[17] – Permittivity

[18] – Permeability

[19] – Leakage Flux

[20] – Liquid Penetrant Test

[21] – Pinholes

[22] – Bursts

[23] – Lamination

[24] – Acoustic Emission Inspection

[25] – Embrittlement

[26] – Heterogenity

[27] – Ultrasonic Inspection

[28] – X-ray Radiography

 

برای دریافت پروژه اینجا کلیک کنید
» نظر

پروژه دانشجویی گزارش کارآموزی کارخانه آبمیوه در word

 

برای دریافت پروژه اینجا کلیک کنید

 پروژه دانشجویی گزارش کارآموزی کارخانه آبمیوه در word دارای 46 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد پروژه دانشجویی گزارش کارآموزی کارخانه آبمیوه در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه پروژه دانشجویی گزارش کارآموزی کارخانه آبمیوه در word

مقدمه:  
فصل اول :  
نوع محصولات تولیدی:  
تاسیسات آب:  
ساختار سیستم های اسمز معکوس:  
پروسه های تولید :  
کنسانتره و گلابی :  
تولید نکتار :  
مراحل تولید پالپ میوه:  
تولید نکتار از پالپ:  
فصل دوم :  
ارزیابی بخش های مرتبط با رشته  
اصطلاحات وتعریفات:  
فرآیند تغلیظ:  
بسته بندی نفوذ ناپذیر :  
آبمیوه ی شفاف:  
آبمیوه ی بازسازی شده :  
تدارکات  وانبارش مواد اولیه:  
فرآوری مواد اولیه و یا ساخت ومونتاژ  قطعات:  
دریافت و آبگیری :  
پا ستوریزاسیون:  
عمل آوری وفاینینگ :  
فیلتر اسیون:  
کنسانتراسیون:  
بسته بندی کردن انبار کردن :  
انبار و سرد خانه:  
هماهنگی و اجرای کیفیت در تولید انواع آبمیوه ، نوشابه بدون گاز دار نکتاب میوه جات  
ضوابط کنترل فرآیند انواع کنسانتره:  
بازرسی و آزمایش مواد و قطعات و محصولات:  
بازرسی و آزمایش مواد اولیه:  
بازرسی و آزمایش حین فرآیند:  
بازرسی و آزمایش محصول نهایی:  
خطی مشی و اهداف کیفیتی واحد تولیدی:  
نگرش کلی بر تکنولوژی تولید آب میوه شفاف:  
آروماگیری ( جمع آوری اسا نس میوه) و تغلیظ اولیه:  
شفاف سازی :  
فیلتراسیون:  
تغلیظ:  
پاستوریزاسیون:  
خط تولید آبمیوه از کنسانتره تکنیک پرکنی:  
فیلتراسیون:  
پرکنی و در بندی:  
اتیکت زنی :  
کارتن کردن:  
انبارکردن:  
شرح خط تولید آبمیوه دوی پک (نوشابه):  

مقدمه

آب میوه، مایعی است که معمولاً در گیاهان یافت می شود. مثلاً آب پرتقال، عصاره میوه درخت پرتقال می باشد. آب میوه یکی از نوشیدنی های رایج مردم دنیاست. هر آب میوه ای میزان خلوص مشخصی دارد. در برخی کشورها، آب میوه ها ، 100 درصد خالص هستند. البته در بیشتر جاها آب میوه ها طبیعی نیستند

کارخانجات تولید کننده آب میوه، از میوه ها اسانس یا عصاره تهیه می نمایند و از مخلوط نمودن این اسانس با شکر و آب ، انواع آب میوه تهیه می کنند. این آب میوه ها به دلیل داشتن شکر ، تنها انرژی زا بوده و معمولا خواص زیادی ندارند.اما آب میوه های تازه سرشار از انواع ویتامین ها و املاح بوده وارزش غذایی بسیار بالایی دارند

اغلب  افراد سعی می کنند که در وعده ی صبحانه، یک لیوان آب میوه تازه بنوشند تا ویتامین های مورد نیاز بدنشان در طول روز تامین شود

آب میوه می تواند به حالت کنسانتره (یا غلیظ شده) موجود باشد. کنسانتره، شکلی از ماده است که اکثر اجزای تشکیل دهنده یا حلال آن را حذف  نموده اند. معمولاً با گرفتن آب موجود در یک محلول یا سوسپانسیون، مثلاً گرفتن آب موجود در آب میوه و تبدیل آن به پودر یا عصاره، کنسانتره تشکیل می شود

فایده تولید کنسانتره این است که با حذف آب ، وزن ماده غذایی کاهش یافته و بنابراین حمل و نقل آن راحت و با صرف هزینه ی کمتر صورت می گیرد، به علاوه  کنسانتره را به راحتی در هنگام مصرف با اضافه نمودن حلال ( معمولاً آب) به حالت اولیه خود برگردانده و مصرف می کنند

فصل اول

نوع محصولات تولیدی

1-   خطوط تولید کنسانتره:

1-1-      کنسانتره سیب سفید

1-2-      کنسانتره ی انار

1-3-      کنسانتره ی آلبالو

1-4-      کنسانتره ی انگور سفید

1-5-      کنسانتره ی انگور قرمز

1-6-      کنسانتره ی توت فرنگی

2ـ خطوط تولید آبمیوه:

2-1- خط تولید تتراپک یک لیتری

2-2-  خط تولید تتراپک 200  سی سی

2-3- خط تولید دوی پک 200 سی سی

2-4- خط تولید دوی پک 280 سی سی

تاسیسات آب

سختی گیر رزینی(Softner):

سختی آب ناشی از یون های کلسیم و منیزیم و به مقدار کمتر ترکیبات فلزاتی چون آهن، منگنز و آلومینیوم می باشد. از آنجایی که سه فلز مذکور به مقادیر جزئی در آب موجودند لذا اثر آن ها در سختی آب بسیار کم است.به علت بروز مشکلات متعدد آب سخت ، در صنعت سختی آب را کاهش می دهند. متداولترین روش برای حذف سختی آب، استفاده از سختی گیر های رزینی        می باشد. رزین ها ، کلسیم و منیزیم را با سدیم تعویض کرده و آب سخت را به آب نرم تبدیل     می کنند

عمده ترین کاربرد دستگاههای  سختی گیری رزینی عبارتند از:

نرم کردن آب دیگ های بخار و مبدل های حرارتی
نرم کردن آب مورد نیاز برج های خنک کننده و سیستم های سرمایشی

مشخصات دستگاه های سختی گیر رزینی شرکت:

ساخته شده از ورق فولاد با ضخامت متناسب بر ظرفیت دستگاه
بدنه داخلی سختی گیر با سه لایه رنگ اپوکسی پوشانده شده است
قابلیت تحمل فشار تا 6بار
استفاده از رزین های کاتیونی با ظرفیت بالا
دارای آب پخش کن های مقاوم از جنس P.V.C
دارای عدسی های استاندارد و دریچه های بازدید در بالا و پایین

(دستگاه های بالا ی قطر 60 دارای دو دریچه در پایین می باشند)

دارای مخزن آب نمکی پلی اتیلن، لوله کشی مناسب ، شیر تخلیه هوا و مانومتر

سیستم آب شیرن کن    Reverse osmosis

در سیستم اسمز معکوس( آب شیرن کن) آب از غشاء نیمه تراوا (ممبران) عبور کرده و نمک های محول آن حذف می شود.  با استفاده از دستگاه آب شیرین کن می توان، آبی با املاح اندک و حتی بدون املاح استحصال کرد. مزیت استفاده از این روش نسیت به سایر روش ها نظیر: تقطیر و یا ستون کاتیونی و آنیونی (دیونایزر) صرفه اقتصادی آن، مصرف انرژی کم ، عدم آلوده سازی محیط زیست، ایمن بودن آن برای اپراتور سیستم و ;. می باشد

عمده ترین کاربرد دستگاه های آب شیرین کن عبارتند از :

1-   تهیه و تولید آب شرب از آب های شور(مصارف شرب)

2-   تامین و تولید آب دیگ های بخار، سیستم های برودتی و مبدل های حرارتی

3-   بازیافت پساب های صنعتی

ساختار سیستم های اسمز معکوس

1-   پیش تصفیه:

با توجه به استاندارهای تعریف شده برای آب ورودی به دستگاه R.O پیش تصفیه خاص آن طراحی و ساخته می شود. اما به طور کلی روش های مورد استفاده عبارتند از : هیدروسیکلون- صافی ذغالی – میکروفیلتر – سیستم ( U.V) – سیستم تزریق بی سولفیت- سختیگیر

2-   سیستم تامین فشار:

غشاء جهت غلبه برفشار اسمزی به فشار بالاتر از فشار اسمزی دارد پس می باید آب ورودی به ممبران حداقل فشار مشخص را داشته باشد. این فشار در ممبران های نوع کم فشارPSI 150 ، در ممبران های معمولی PSI 220 و در ممبران های آب دریا PSI 800 میباشد. از آنجایی که زنگ آهن نباید وارد ممبران شود بهتر است از پمپ با جداره استیل ا ستفاده شود

3-   ممبران ها :

با توجه به کیفیت آب ورودی ، کیفیت در خواستی آب تولیدی و میزان آب تولیدی نوع و مدل ممبران ها انتخاب می شود. روش  چینش ممبران ها با توجه به محاسبات طراحی می تواند بصورت موازی و یا سری و یا توامان باشد

4-   سیستم کنترل دبی و فشار :

جهت بررسی عملکرد دستگاه نیاز به اندازه گیری میزان آب تولیدی ، دور ریزو آب برگشتی است، بنابراین در سر راه تولید، دو ریز و برگشتی فلو متر قرار دارد. همچنین باید در میسر آب ورودی به دستگاه ، آب  ورودی به ممبران ها و آب خروجی از ممبران ها ما نومتر باشد تا فشار سیستم به راحتی قابل اندازه گیری بوده تا راهبری بر اساس آن انجام شود. در سیستمهای R.O برای آب ورودی به دستگاه سوئیچ فشارئ پایین قرار می گیرد که رد صورت نبود آب و یا عدم تامین فشار اولیه دستگاه بطور اتوماتیک خاموش گردد و پس از پمپ اصلی نیز سوئیچ فشار بالاقرار       می گیرد تا درصورت افزایش فشار بیش از حد تعریف شده دستگاه خاموش گردد

5-   تابلوی برق:

تابلو برق جهت فرمان قدرت دستگاه طراحی و ساخته می شود این تابلو می تواند ترکیب از PLC و برق صنعتی و یا فقط برق صنعی باشد

 6-   سیستم ترزیق ضد رسوب:

جهت کنترل رسوبات همواره مواد ضد رسوب به سیستم تزریق می شود. نوع و مقدار تزریق مواد ضد رسوب با توجه به کیفیت و کمیت آب ورودی به دستگاه متغیر است

پروسه های تولید

پروسه ی تولید کنسانتره ی آبمیوه ی : سیب و گلابی

سیلو بتنی اسکرود وزینگ للواتور میزسورتینگ گریندز مش پمپ مش تانک پرس 1-2 ویبره تانک آبمیوه خام مرحله ی تغلیظ پاستوریزه در 95  دمای خروجی 5-55 تانکهای فاینینگ تصفیه آنزیم تانک تغذیه UF تانکهای آبمیوه شفاف مرحله ی دوم تلغیظ کنستانتره 55درجه پلیت کولر 10-15 درجه تانک بلند  فیلتر بشکه های پلاستیکی سردخانه

کنسانتره و گلابی

میوه sorthing گریندر پرس کردن پاستویزاسیون فاینینگ پرس تلغیظ کنسانتره سرد کردن پر کردن سردخانه

کنسانتره آلبالو، توت فرنگی و انگور:

میوه sorthing سیلوی  استیل دم و خوشه چینی مثل هیتر مثل تانک پرس کردن پاستور یزاسیون آنزیم زنی فاینینگ فیلتر کنسانتره پر کنی سردخانه

تولید نکتار

نکتار آبمیموه ای است که حاوری گوشت میوه بوده و با افزودن آب ، شکر  ،اسیدهای خوراکی مجاز خاص آن میوه مثل اسید ستیریک به پالپ حاصل از میوه به دست می آید

مراحل تولید پالپ میوه

 

برای دریافت پروژه اینجا کلیک کنید
» نظر

پروژه دانشجویی پایان نامه هیدرولیک و پنوماتیک در word

 

برای دریافت پروژه اینجا کلیک کنید

 پروژه دانشجویی پایان نامه هیدرولیک و پنوماتیک در word دارای 139 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد پروژه دانشجویی پایان نامه هیدرولیک و پنوماتیک در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه پروژه دانشجویی پایان نامه هیدرولیک و پنوماتیک در word

مقدمه :  
تعریف هیدرولیک  
تاریخچه هیدرولیک  
مزایا و معایب سیستمهای هیدرولایکی روغنی  
مزایای سیستم های هیدرولیک  
معایب سیستمهای هیدرولیک  
مفهوم فشار در مدارهای هیدرولیک  
مفهوم دبی :  
اورفیس  
ساختار یک سیستم هیدرولیک  
مقایسه سیستمهای هیدرولیک  
سیستم مرکز بسته  
تفاوت سیستمهای مرکز باز و مرکز بسته  
سیستمهای مرکز باز  
سیستمهای مرکز بسته  
الف – سیستمهای مرکز باز با اتصالات سری  
ب- سیستم مرکز باز با اتصالات سری موازی  
ج- سیستم مرکز باز با مقسم جریان  
د- سیستم مرکز بسته با پمپ دبی ثابت و انباره  
سیستم مرکز بسته با پمپ دبی متغیر  
سیستم های هیدرولیک بیل بکهو  
سیستم هیدرولیک در لیفتراک ها  
پمپها  
انواع پمپها  
انواع پمپها از نظر ساختمان  
تنظیم فشار  
ساختمان و طرز کار انواع پمپ  
پمپهای پیستونی  
پمپهای پیستونی شعاعی ( دوار )   
پمپهای پیستونی محوری  Axial Piston Pumps  
مخزن تانک هیدرولیک   reservoir      
انباره هیدرولیک     Accumulator  
لوله های هیدرولیک  
اتصالات   Fittings  
نکات ایمنی در استفاده از شلنگ ها  
موارد مهم در نصب شلنگ ها  
علائم و سمبل ها  
انواع شیرهای کنترل  
شیرهای پاپتی (مخروطی)  Poppet valves  
شیرهای قرقره ای  Spool valves  
شیرهای یک طرفه   CHECK  VALVES  
شیرهای یک طرفه با پایلوت  Pilot operated check valves  
شیرهای کنترل جریان یک طرفه یا محدود کننده Restriction vheck valves  
مصرف کننده ها در سیستمهای هیدرولیک      Actuators  
مصرف کننده های خطی    Linear actuators  
استانداردهای روغن  
مواد افزودنی    (ADDITIVE)  روغن  
1- مواد ضد اکسید  ANTI OXIDANTS  
2- مواد جلوگیری کننده از ایجاد کف  ANTI – FOAM  
3- مواد پایین آورنده نقطه ریزش                 POUR   POINT   DEPRESSANT  
4- معلق کننده ها     DISPERSANTS   ADDITIVE  
5-پاک کننده ها    DETERGENTS  
6- مواد ضد سائیدگی   ANTI-WEAR  
7- مواد بهبود دهنده‌ شاخص گرانرویVIIMPROVER  
8- مواد افزودنی کاهش دهنده اثرات فشار بر دنده ها  
1- نقطه ریزش    POUR   POINT  
2- نقطه اشتعال    FLASH POINT  
TBN (قلیائیت کل )  
شاخص یا اندیس ویسکوزیته VI  
روشهای تست روغن ASTM  
سیستم های هیدرولیک مرکزی  
مقایسه سیستم مرکزی و سیستم جداگانه  
سیستم های هیدرولیک جداگانه  
مزایا  
سیستم های هیدرولیک مرکزی  
معایب  
انباره های هیدرولیک  
سرویس و نگهداری و تعمیرات سیستمهای هیدرولیک  
دیدگاه یک تعمیرکار  
ابزارهای اندازه گیری  
فشار سنج ها     Pressure gauge  
کولرهای روغن  
روغن هیدرولیک  
چگونه روغن هیدرولیک را کنترل نمائیم ؟‌  
چگونه به سیستم ، روغن اضافه کنیم ؟  
چگونه فیلترها را تعویض نماییم ؟‌  
چگونه نشتی ها را پیدا کنیم ؟  
اجتناب و دوری جستن از خطوط روغن پر فشار  
هوای اتمسفر  
فشار اتمسفر  
قانون بویل  
قانون شارل  Chres law  
قانون آمونتون  
مطالبی در مورد سیستمهای پنوماتیک  
انواع کمپرسورها  
منابع مورد استفاده :  

بخشی از منابع و مراجع پروژه پروژه دانشجویی پایان نامه هیدرولیک و پنوماتیک در word

 1-Hydraulics and Pneumatics           تالیف : Andrew Parr

2-هیدرولیک و پنوماتیک ، تالیف : هری ل . استورات ، ترجمه تیمور اشتری نخعی

3-Partical Pneumatics

مقدمه

امروزه با توجه به اینکه در کشور عزیزمان قدمهای بزرگی در جهت صنعتی شدن برداشته شده است ، توانایی های علمی و تجارب فنی به عنوان بزرگترین پشتیبان صنایع مطرح خواهند بود

تقریباً در اغلب کارخانجات و کارگاههای صنعتی ابزارها و دستگاههایی وجود دارند که در آنها از سیستمهای هیدرولیک پا پنوماتیک استفاده شده است . توانایی بکار گیری و نگهداری صحیح از این ماشین آلات افزایش عمر مفید آنها را در بر خواهد داشت ، لذا داشتن اطلاعات کافی از علم هیدرولیک و پنوماتیک و کاربرد این علوم می‌تواند در استفاده صحیح و نیز سرویس و نگهداری به موقع ماشین آلات مفید باشد

  از آنجائیکه هنوز به طور کامل توان ساخت قطعات و مجموعه های هیدرولیکی و پنوماتیکی با توجه به دقت بالای آنها در کشور ما وجود ندارند ، در این کتاب بیشتر به شناخت اجزاء سیستمهای هیدرولیک و پنوماتیک ، سرویس و نگهداری ، تعمیرات و طراحی مدار آنها پرداخته ایم . همچنین به دلیل کاربرد وسیعتر هیدرولیک در صنایع مختلف در بخش اول آشنایی ، کاربرد ، طراحی و سرویس و نگهداری سیستمهای هیدرولیک و پنوماتیکم با ارائه یک مثال کاملاً کاربردی و واقعی از یک سیستم پنوماتیک ، کاربرد ، اجزاء و طرز کار آن مورد بحث قرار گرفته است

تعریف هیدرولیک

از آنجائیکه مایعات در هیدرولیک نقش  اصلی را ایفا می‌کنند و نیز استفاده از این علم امکان انتقال نیرو ، حرکت و کنترل آنها را بدست می‌دهد می‌توان هیدرولیک را به صورت زیر تعریف نمود

هیدرولیک علم استفاده از مایعات جهت انتقال و کنترل نیرو حرکت می‌باشد

تاریخچه هیدرولیک

انسان کشاورزی را از کذشته های دور آغاز نمود و بعلت نیاز به مواد غذایی حاصل از آن نمی تواند ارتباط خود را با این حرفه قطع نماید . با توجه به اینکه کشاورزی وابستگی مطلق به آب داشته و استفاده بهتر از آب ، آبادانی و محصول بیشتری را در پی خواهد داشت ، انسانها همواره در پی یافتن راههایی برای استفاده بهینه از آب و انرژی آبی بوده اند . در قرن هشتم میلادی بشر موفق به کشف چرخ آبی گردید . بکارگیری چرخ‌ آبی توسط مصریان جهت آبیاری مزارع اولیه گامها در آشنایی و استفاده از علم هدرولیک بود . با این حال تا قرن 16 میلادی هنوز قدمهایی جدی در این راه برداشته نشدده بود تا اینکه توریچلی دانشمند ایتالیایی توانست مقدار فشار اتمسفر را توسط بارومتر اندازه گیری نماید

در قرن هفدهم میلادی یک دانشمند اروپایی به نام پاسکال قوانین اولیه هیدرولیک را پایه ریزی نمود . بر اساس قانون پاسکال فشار وارده بر هر نقطه از یک مایع محسوب به طور مساوی در تمام جهات منتقل شده و با نیروی مساوی بر روی سطح مساوی اثر می‌کند . به عبارت دیگر فشار وارده بر مایعات داخل ظروف بسته در تمام نقاط برابر است

 پرس های هیدرولیکی برای اولین بار بر پایه این قانون ساخته شدند . در قرن نوزدهم میلادی پرسهای هیدرولیک آبی اختراع شدند و در قرن بیستم میلادی هیدرولیک روغنی در صنایع به طور وسیعی مورد استفاده قرار گرفت

مزایا و معایب سیستمهای هیدرولایکی روغنی

مزایای سیستم های هیدرولیک

1)    یادگیری و طراحی و نصب آسان قطعات هیدرولیک به دلیل استاندارد بودن آنها

2)      تولید و انتقال نیروهای بزرگ توسط قطعات کوچک هیدرولیکی

3)     افزایش عمر قطعات به دلیل استفاده از روغن در داخل سیستمهای هیدرولیک و کاهش میزان فرسایش

4)  امکان بدست آوردن نیرو ، فشار ، گشتاور و سرعتهای غیر پله ای و یا اصطلاحاً داشتن تعداد بی نهایت سرعت ،‌ فشار و نیرو

5)     انعطاف پذیری بسیار زیاد سیستم با استفاده از لوله و شلنگ ها

6)     سرویس و نگهداری آسان و امکان کنترل سیستم توسط تعدادی فشار سنج و حرارت سنج

7)     امکان تعویض جهت حرکت با سرعت زیاد

8)     بکار گیری نیروی کم کارگری و امکان اتوماسیون کامل سیستم

9)     اقتصادی بودن بکارگیری سیستمهای هیدرولیک 

معایب سیستمهای هیدرولیک

1-  در صورت استفاده از روغن نا مناسب و یا اشکال در طراحی مسیرها ، افت فشار و در نتیجه اطلاف انرژی وجود خواهد داشت

2-  فشار در سیستم های هیدرولیک زیاد بووده و یه همین دلیل لوله و شلنگ های قوی و بست های بسیار دقیق جهت آب بندی مورد نیاز می‌باشد

3-  به دلیل حساسیت بسیار زیاد سیستمهای هیدرولیک . وجود کوچکترین مقدار گرد و خاک ، زنگ زدگی و آشغال در داخل سیستم باعث خرابی آن می‌گردد

فشار چیست ؟

درک مفهوم فشار به دلیل استفاده مکرر این کلمه در سیستمهای هیدرولیک دارای اهمیت بسیاری می‌باشد برای درک مفهوم فشار به مثالهای زیر توجه نمایید

 اگر بر روی یک لوله آب ، فشار سنجی را نصب کنیم و مسیر حرکت آب را باز نگاه داریم فشار سنج عدد صفر را نشان خواهد داد

 حال اگر دو عدد جک هیدرولیکی به مساحت سطح  را توسط یک لوله به هم وصل نموده و یک وزنه 10 کیلو گرمی را بر روش دسته یکی از جکها قرار دهیم فشارسنج ها مقادیر یکسانی برابر با یک کیلو گرم بر سانتی متر مربه را نشان خواهند داد

در انتها ، اگر دو جک هیدرولیک به مساحت سطح مقطع  و را توسط یک لوله به هم اتصال داده و یک وزنه 10 کیلوگرمی را بر روی دسته جک اول قرار دهیم فشار قرائت شده بر روی هر فشارسنج به شرح زیر خواهد بود

 (فشار زمانی بوجود می‌آید که مقاومتی در برابر حرکت جریان وجود داشته باشد.)

از آنجائیکه درک مفهوم فشار فوق العاده مهم می‌باشد این قسمت را با دقت مطالعه فرمایید

مثال1 : شاید برای شما این اتفاق افتاده باشد که مار آشپزخانه ای را در دست گرفته و آن را در حوض آب به حرکت در آورده باشید . زمانیکه کار را از سمت تیز آن به حرکت در می‌آورید در مقایسه با زمانیکه آن را از سمت پهن آن به حرکت در می‌آورید نیاز به نیروی کمتری خواهد داشت

در این مثال سه عامل نقش اساسی  دارند

1- دست یا عامل تولید نیرو و حرکت          2- سطح کارد           3- وجود مایع

مثال 2 : مسلماً افرادی که شنا می‌کنند این موضوع را کاملاً تجربه کرده‌اند که در عمق‌های مختلف آب ، پرده گوش آنها تحت فشار بوده و اگر شناگر سر خود را از آب بیرون آورد هیچ فشاری را بر روی پرده گوش خود احساس نمی کند . در این مثال نیز موارد زیر نقش اساسی را بر عهده دارند

1- سطح پرده گوش             2- عمق آب             3- وجود مایع

مثال 3 : در سیلندر شماره یک  با وجود اعمال نیرو بدلیل بسته بودن ظرف ، پیستون به سمت پایین حرکت نخواهد کرد ولی در سیلندر شماره دو  در اثر افزایش نیروی بدنه ظرف از ضعیف ترین نقطه سوراخ شده و پیستون به سمت پایین حرکت می‌کند . در اینجا نیز عوامل زیر مؤثر می‌باشند


1- نیروی اعمالی                 2- سطح جک           3- وجود مایع

مثال 4 : شلنگ آبی به سمت یک توربین گرفته شده است . ذرات آب که دارای انرژی می‌باشند به سطح پرده های توربین برخورد کرده ، باعث حرکت توربین می‌گردند . عوامل مؤثر بر حرکت توربین عبارتند از

1- نیرو ( حاصل از انرژی جنبشی مایع )      2- سطح پره های توربین


3- وجود مایع

برنولی دانشمند اروپایی کشف کرد که مجموع انرژی در یک جریان مایع محبوس همیشه مقدار ثابتی می‌باشد

انرژی جنبشی مایع + فشار پتانسیل + فشار استاتیکی مایع = مقدار انرژی

مثال 4و1                 مثال 2                     مثال

 = مقدار ثابت

در فرمول فوق  ، نشان دهنده سرعت مایع  ، دانستیه مایع می‌باشند . در هیدرولیک روغنی مقدار  یا فشار پتانسیل با توجه به اینکه حداکثر ارتفاع سیستمهای هیدرولیکی از 20 متر تجاوز نمی کند صفر در نظر گرفته می‌شود

بنابر این فرمول مکور در سیستمهای هیدرولیک روغنی به شرح زیر می‌باشد

انرژی جنبشی مایع + فشار استاتیکی مایع = مقدار ثابت

مایع در داخل لوله در حال حرکت بوده و بدون برخورد با مانعی به بیرون هدایت می‌شود . از آنجائیکه مقدار انرژی مایع ثابت است پس بدلیل عدم وجود مانعی در مسیر مایع ، مقدار استاتیکی صفر بوده و تمام انرژی مایه به انرژی جنبشی تبدیل می‌گردد

فشار سنج ها همواره مقدار فشار هیدرو استاتیک را در محل نصب شده نشان می‌دهند بنابراین در این شکل فشار سنج ، عدد صفر را نمایش می‌دهد

در این مثال مایع در یمک محفظه بسته قرار داشته و انرژی جنبشی مایع صفر است . در این حالت تمام انرژی حاصل از وزنه 10 کیلوگرمی به انرژی فشار هیدرواستاتیک تبدیل می‌گردد . در مثالهای ذکر شده تقریباً با عواملی نظیر نیرو ، سطح و فشار آشنا شدیم و اکنون رابطه بین آنها را با استفاده از فرمول زیر خواهیم دید

 وزنه 10 کیلوگرمی بر سطحی معادل  اثر می‌کند بنابراین

در سیستمهای تجاری واحد سنجش فشار ، بار و یا اتمسفر می‌باشد . همچنین در این مثال چنانچه قبلاً هم اشاره شد بر اساس قانون پاسکال تمام فشار سنجها عدد یک بار  را نشان می‌دهند . به همین ترتیب مقدار فشار قرائت شده از فشار سنج ها یک بار خواهد بود

مفهوم فشار در مدارهای هیدرولیک

قبل از پرداختن به بحث فشار در یک مدار هیدرولیکی بهتر است ابتدا به شرح مفهوم مدار و سیستم هیدرولیک بپردازیم . برای آنکه یک جک هیدرولیک حرکت کند و یا یک پرس هیدرولیکی عمل پرس را انجام هد می‌بایست یک مدار یا سیستم هیدرولیک برای آن طراحی گردد . البته توضیح درباره جزئیات و ملزومات یک مدار کاملا هیدرولیک در فصلهای بعدی به طور کامل خواهد آمد ، اما برای آنکه در اینجا تصویری درست از یک مدار یا سیستم هیدرولیکی داشته باشیم می‌توان گفت سیستم هیدرولیک از یک تانک و مخزن آغاز و نهایتاً به همان تانک خاتمه می‌یابد و در داخل مقدار قطعاتی از جمله پمپ ، صافی ، مصرف کننده ها و شیرها وجود دارند . مجموعه قطعات داخل مدار در ارتباط با یکدیگر کار مورد انتظار به سیستم را به انجام می‌رسانند

مدارهای هیدرولیک شباهت زیادی به مدارهای برقی دارند . در مدارهای برقی مقاومت را به شکل…………… نشان می‌دهند . در مدارخطی هیدرولیک نیز علامت مشخصه مقاومت ………………  می‌باشد

مدارهای موازی

در مسیر فوقانی مقاومت 5 بار و مسیر پایینی مقاومت 10 بار می‌باشد .حال این سئوال مطرح است که فشار سنجهای 1 و 2 چه فشارهایی را نمایش خواهند داد

با اشاره مجدد به مفهوم فشار و اینکه اصولاً‌در مدارها وقتی مقاومتی در سر راه جریان واقع می‌شود ، مایع از مسیری عبور خواهد کرد که کمترین مقاومت را داشته باشد . پس جواب سؤال فوق مشخص می‌گردد . فشارسنج 2 مقدار صفر و فشار سنج 1 مقدار 5 بار را نشان می‌دهند . فشار سنج 2 به دلیل عدم وجود هیچگونه مقاومتی در سر راه جریان و راه داشتن به تانک عدد صفر را نمایش خواهد داد . در این مدار دو مقاومت 5 و 10 بار قرار داده شده است . با توجه به آنچه ذکر شد مایع از مسیری به مقاومت کمتر یعنی مسیر 5 باری عبور خواهد نمود و فشار سنج 1 میزان فشار 5 بار را در مدار نشان خواهد داد

مفهوم دبی

لوله شماره 1 دارای سطح مقطع  و لوله شماره 2 داراس سطح مقطع  می‌باشند . فرض کنید هر دو لوله به پمپی با قدرت جابجایی 50 لیتر در دقیقه متصل شده اند . حال این سؤال مطرح است که کدامیک از دو لوله زودتر ظرفی با گنجایش 500 لیتر را پر می‌کنند ؟ آزمایش نشان داده است هر دو لوله تقریباً در یک زمان ظرف 500 لیتری را پر می‌کنند. در لوله شماره 1 سطح مقطع کوچک و سرعت مایع زیاد و در لوله شماره 2 سطح مقطع بزرگ ولی سرعت پایین می‌باشد


دبی عبارتست از مقدار مایعی که در واحد زمان از یک سطح مقطع معین عبور می‌نماید و واحد آن لیتر در دقیقه و یا گالن در یاعت می‌باشد . دبی پمپ مثال فوق 50 لیتر در دقیقه می‌باشد

لوله ای با دو مقطع مختلف نشان داده شده است که توسط یک پمپ بادبی 50 لیتر در دقیقه تغذیه می‌گردد . مقدار خروجی از لوله در مقطع کوچکتر چقدر خواهد بود ؟ از آنجائیکه دبی پمپ ثابت می‌باشد تغییر سطح مقطع در لوله ها تغییر سرعت جریان را به همراه خواهد داشت . رابطه سرعت و سطح مقطع لوله ها به شرح زیر می‌باشد :‌

آزمایس نشان می‌دهد مقدار فشار در ناحیه 2 کاهش یافته و سرعت مایع زیاد می‌گردد . در ناحیه 3 نیز فشار افت نموده است ولی دبی در طول لوله تقریباً ثابت است ، این لوله ونتوری می‌نامند . در این لوله ها شدت جریان تابعی از اختلافات فشار بین نقاط1 و 2 می‌باشد

در صورت مسدود شدن جلوی لوله ، فشار سنج ها یک میزان فشار را نمایش می‌دهند، زیرا مجموع انرژی جنبشی و انرژی فشار هیدرو استاتیک مایع تبدیل به انرژی فشار  هیدرواستاتیک می‌شود

اورفیس

اورفیس یا تنگنا عبارتست از یک روزنه کوچک که باعث عبور کنترل شده مایع از یک سمت به سمت دیگر می‌گردد .کاربرد آن چنانکه خواهیم دید در طراحی شیرهای هیدرولیکی دارار اهمیت زیادی است . پس از عبور مایع از اورفیس ، فشار کاهش پیدا می‌کند .حال اگر جلوی لوله مسدود گردد بر اساس قانون پاسکال فشار در تمام نقاط یکسان خواهد بود

دو دریچه  و  در حالت عادی مسدود می‌باشند و در سطح مقطع استوانه  یک اورفیس وجود دارد . اگر دریچه  باز شود ، بدلیل وجود اورفیس در سطح مقطع  در دو طرف آن فشارهای  و  بوجود خواهد آمد ( در حالت بسته بودن  بود ) . مقدار  بدلیل وجود اورفیس کمتر از  خواهد بود ، این اختلاف فشار باعث بوجود آمدن اختلاف نیرو شده و سطح مقطع  به سمت بالا حرکت خواهد کرد . به این ترتیب پایه استوانه جلوی دریچه  را باز خواهد نمود

حال اگر دریچه را ببندیم اختلاف فشار  و  از بین رفته و فشار در تمام نقاط یکسان خواهد بود . بدین ترتیب سطح مقطع استوانه  با نیروی فنر به حالت اولیه برگشته و دریچه  بسته خواهد شد . مثال فوق اساس کار شیر هیدرولیک فشار شکن با پایلوت ( راه انداز ) می‌باشد

ساختار یک سیستم هیدرولیک

اگر دو جک هیدرولیک را توسط یک لوله به یکدیگر ارتباط دهیم و بر روی یکی از جکها یک زونه یک کیلوگرمی قرار دهیم شفت جک دوم به سمت بالا حرکت خواهد کرد . مقدار جابجایی شفت جک دوم معادل مقدار مایع هم وزن با وزنه روی جک اول می‌باشد . به عیارت دیگر وزن مایع جابجا شده نیز یک کیلو گرم خواهد بود


دو جک با سطح مقطع های متفاوت به یکدیگر متصل شده اند . چنانچه در شکل نشان داده شده است یک وزنه 1 کیلو گرمی بر روی جکی با سطح مقطع  و یک وزنه 10 کیلو گرمی بر روی جکی با سطح مقطع  قرار گرفته و سیستم در حالت تعادل هیدرولیکی می‌باشد

از آنجائیکه فشار حاصل از وزنه 1 یک کیلو گرمی معادل    و فشار حاصل از وزنه 10 کیلوگرمی معادل می باشد بنابر این سیستم در حالت تعادل هیدرولیکی قرار می‌گیرد . همانطور که ملاحظه می‌شود ، در این مثال وزنه یک کیلو گرمی در جک اول توانسته است وزنه 10 کیلوگرمی در‌جک دوم را در حالت تعادل نگهدارد که به آن اصل تشدید نیرو می‌گویند


با وجود این اکنون اگر حرکت  وزنه سنگین تر ( جک دوم ) به سمت بالا مد نظر باشد می‌توان به جای وزنه یک کیلو گرمی یک پمپ دستی جایگزین نمود

با حرکت دادن دسته پمپ ، وزنه سنگینتر جابجا می‌شود ولی مقدار جابجایی آن کم می‌باشد زیرا با حرکت دسته پمپ تا انتها ( مثلاً 10 سانتی متر ) ، جک به میزان کمی جابجا خواهد شد ( مثلاً 1 سانتی متر ) . پس جهت کاملتر شدن مدار لازم است تغییرات دیگری در آن اعمال گردد تا وزنه سنگین کورس جابجایی بیشتری داشته باشد. برای حل این مسئله می‌توان از یک تانک هیدرولیک و دو عدد شیر یک طرفه استفاده نمود


شیر یک طرفه 1 مانع از برگشت روغن زیر وزنه به پمپ و شیر یک طرفه دوم مانع از برگشت روغن به داخل تانک در هنگام پمپاژ آن به جک می‌شوند

علاوه بر این شیر یک طرفه 2 امکان تغذیه پمپ را نیز فراهم می‌سازد چنانچه با حرکت دسته پمپ به سمت بالا بدلیل بوجود آمدن یک خط مکش ، روغن از تانک وارد پمپ می‌گردد . تانک هیدرولیک به عنوان منبع تغذیه مدار از روغن و نهایتاً حرکت بیشتر جک بکار می‌رود

در مثال قبل جک فقط قادر است به سمت بالا حرکت کند و امکان حرکت آن به سمت پایین وجود ندارد . علاوه بر این در عمل ، حجم وسیع عملیات هیدرولیک استفاده از پمپهای دستی را محدود می‌سازد ، بنابر این لازم است تغییرات دیگری در سیستم فوق اعمال گردد

 با استفاده از یک پمپ هیدرولیک یک لوله برگشت و شیر کنترل جهت می‌توان جک هیدرولیکی را به بالا و پایین هدایت نمود . اگر شیر کنترل جهت را به سمت بالا هدایت نماییم روغن از پمپ به زیر پیستون جک رفته و خط فشار در قسمت زیر پیستون بوجود می‌آید ، و اگر شیر کنترل جهت را به سمت پایین هدایت کنیم ، روغن به بالای پیستون جک راه یافته و خط فشار در قسمت بالای پیستون بوجود می‌آید

لازم به ذکر است اگر بخواهیم جک را به سمت بالا هدایت کنیم می‌بایست روغن طرف دیگر پیستون جک تخلیه گردد ، زیرا مایع غیر قابل تراکم بوده و صورت عدم تخلیه روغن بالای جک ، حرکتی در جک مشاهده نخواهد شد به همین دلیل خط برگشت روغن را توسط شیر کنترل جهت به تانک ارتباط می‌دهیم

اگر حرکت جک به سمت پایین مد نظر باشد ، مانند حالت قبل می‌بایست روغن طرف دیگر جک را به تانک ارتباط داده و تخلیه نماییم



اگر جک به سمت بالا حرکت کردده و به انتهای کورس خود برسد ، از آنجائیکه پمپ هیدرولیک در حال کارکردن و پمپاژ روغن به جک می‌باشد ، روغن فضایی برای فرار پیدا نکرده و فشار داخل مدار بالا می‌رود . در این حالت فشار سیستم کاهش پیدا نکند. مدار از ضعیفترین نقطه منفجر می‌گردد . کنترل فشار بوسیله شیرهای فشار شکن انجام می‌گیرد

کارکرد اجزاء یک سیستم هیدرولیک در اثر مرور زمان باعث فرسایش قطعات و ساییدگی آنها می‌گردد . براده فلزات و همچنین گرد و غبار وارد شده به داخل سیستم در صورت عدم تصفیه روغن پس از مدتی باعث خرابی قطعات و از بین رفتن لقی مجاز آنها خواهد شد . جهت جلوگیری از بروز این مشکل از فیلتر ها در مسیر برگشت روغن به تانک و یا در خط مکش پمپ ( خطوط کم فشار ) استفاده می‌شود

 مقایسه سیستمهای هیدرولیک

دو نوع عمده سیستم های هیدرولیک عبارتند از : سیستمهای مرکز باز و سیستم های مرکز بسته

شیر کنترل جهت مورد استفاده در سیستمهای مرکز باز در حالت مرکزی خود اجازه می‌دهد جریان روغن از پمپ به تانک باز گردد . سیستم دارای یک پمپ دبی ثابت است و در زمانیکه سیستم کار خاصی را انجام نمی دهد ، روغن بلا استفاده به تانک باز می‌گردد

در سیستمهای مرکز بسته ، وقتی کار خاصی انجام نمی شود ،‌پمپ نیز متوقف شده و عملیات پمپاژ را قطع می‌کند . بنابر این شیر کنترل جهت در حالت مرکزی بسته است و اجازه عبور روغن را نمی دهد . یک نمونه از سیستمهای مرکز باز و یک نمونه از سیستمهای مرکز بسته نمایش داده شده‌اند

سیستم مرکز بسته

 

برای دریافت پروژه اینجا کلیک کنید
» نظر
<   <<   76   77   78   79   80   >>   >